Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 30(23): 42308-42322, 2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36366687

RESUMO

We demonstrate how the individual mirrors of a high-quality Kirkpatrick-Baez (KB) mirror system can be aligned to each other to create an optimally focused beam, through minimizing aberrations in the phase of the ptychographically reconstructed pupil function. Different sources of misalignment and the distinctive phase artifacts they create are presented via experimental results from the alignment of the KB mirrors at the NanoMAX diffraction endstation. The catalog of aberration artifacts can be used to easily identify which parameter requires further tuning in the alignment of any KB mirror system.

2.
J Synchrotron Radiat ; 29(Pt 3): 807-815, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35511013

RESUMO

X-ray fluorescence microscopy performed at nanofocusing synchrotron beamlines produces quantitative elemental distribution maps at unprecedented resolution (down to a few tens of nanometres), at the expense of relatively long measuring times and high absorbed doses. In this work, a method was implemented in which fast low-dose in-line holography was used to produce quantitative electron density maps at the mesoscale prior to nanoscale X-ray fluorescence acquisition. These maps ensure more efficient fluorescence scans and the reduction of the total absorbed dose, often relevant for radiation-sensitive (e.g. biological) samples. This multimodal microscopy approach was demonstrated on human sural nerve tissue. The two imaging modes provide complementary information at a comparable resolution, ultimately limited by the focal spot size. The experimental setup presented allows the user to swap between them in a flexible and reproducible fashion, as well as to easily adapt the scanning parameters during an experiment to fine-tune resolution and field of view.


Assuntos
Holografia , Microscopia , Nervo Sural , Síncrotrons , Fluorescência , Humanos , Microscopia/métodos , Microscopia de Fluorescência , Radiografia , Nervo Sural/diagnóstico por imagem , Raios X
3.
J Synchrotron Radiat ; 29(Pt 3): 876-887, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35511021

RESUMO

The diffraction endstation of the NanoMAX beamline is designed to provide high-flux coherent X-ray nano-beams for experiments requiring many degrees of freedom for sample and detector. The endstation is equipped with high-efficiency Kirkpatrick-Baez mirror focusing optics and a two-circle goniometer supporting a positioning and scanning device, designed to carry a compact sample environment. A robot is used as a detector arm. The endstation, in continued development, has been in user operation since summer 2017.

4.
Sci Rep ; 12(1): 6203, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35418587

RESUMO

Imaging large areas of a sample non-destructively and with high resolution is of great interest for both science and industry. For scanning coherent X-ray diffraction microscopy, i. e., ptychography, the achievable scan area at a given spatial resolution is limited by the coherent photon flux of modern X-ray sources. Multibeam X-ray ptychography can improve the scanning speed by scanning the sample with several parallel mutually incoherent beams, e. g., generated by illuminating multiple focusing optics in parallel by a partially coherent beam. The main difficulty with this scheme is the robust separation of the superimposed signals from the different beams, especially when the beams and the illuminated sample areas are quite similar. We overcome this difficulty by encoding each of the probing beams with its own X-ray phase plate. This helps the algorithm to robustly reconstruct the multibeam data. We compare the coded multibeam scans to uncoded multibeam and single beam scans, demonstrating the enhanced performance on a microchip sample with regular and repeating structures.

5.
Adv Sci (Weinh) ; 9(8): e2105432, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35289133

RESUMO

The synthesis of hierarchically porous materials usually requires complex experimental procedures, often based around extensive trial and error approaches. One common synthesis strategy is the sol-gel method, although the relation between synthesis parameters, material structure and function has not been widely explored. Here, in situ 2D hard X-ray ptychography (XRP) and 3D ptychographic X-ray computed tomography (PXCT) are applied to monitor the development of hierarchical porosity in Ni/Al2 O3 and Al2 O3 catalysts with connected meso- and macropore networks. In situ XRP allows to follow textural changes of a dried gel Ni/Al2 O3 sample as a function of temperature during calcination, activation and CO2 methanation reaction. Complementary PXCT studies on dried gel particles of Ni/Al2 O3 and Al2 O3 provide quantitative information on pore structure, size distribution, and shape with 3D spatial resolution approaching 50 nm, while identical particles are imaged ex situ before and after calcination. The X-ray imaging results are correlated with N2 -sorption, Hg porosimetry and He pycnometry pore characterization. Hard X-ray nanotomography is highlighted to derive fine structural details including tortuosity, branching nodes, and closed pores, which are relevant in understanding transport phenomena during chemical reactions. XRP and PXCT are enabling technologies to understand complex synthesis pathways of porous materials.

6.
J Synchrotron Radiat ; 29(Pt 1): 224-229, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34985439

RESUMO

Coherent X-ray imaging techniques, such as in-line holography, exploit the high brilliance provided by diffraction-limited storage rings to perform imaging sensitive to the electron density through contrast due to the phase shift, rather than conventional attenuation contrast. Thus, coherent X-ray imaging techniques enable high-sensitivity and low-dose imaging, especially for low-atomic-number (Z) chemical elements and materials with similar attenuation contrast. Here, the first implementation of in-line holography at the NanoMAX beamline is presented, which benefits from the exceptional focusing capabilities and the high brilliance provided by MAX IV, the first operational diffraction-limited storage ring up to approximately 300 eV. It is demonstrated that in-line holography at NanoMAX can provide 2D diffraction-limited images, where the achievable resolution is only limited by the 70 nm focal spot at 13 keV X-ray energy. Also, the 3D capabilities of this instrument are demonstrated by performing holotomography on a chalk sample at a mesoscale resolution of around 155 nm. It is foreseen that in-line holography will broaden the spectra of capabilities of MAX IV by providing fast 2D and 3D electron density images from mesoscale down to nanoscale resolution.


Assuntos
Holografia , Imageamento Tridimensional , Radiografia , Síncrotrons , Raios X
7.
J Synchrotron Radiat ; 28(Pt 6): 1948-1953, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34738950

RESUMO

The CoSAXS beamline at the MAX IV Laboratory is a modern multi-purpose (coherent) small-angle X-ray scattering (CoSAXS) instrument, designed to provide intense and optionally coherent illumination at the sample position, enabling coherent imaging and speckle contrast techniques. X-ray tracing simulations used to design the beamline optics have predicted a total photon flux of 1012-1013 photons s-1 and a degree of coherence of up to 10% at 7.1 keV. The normalized degree of coherence and the coherent flux of this instrument were experimentally determined using the separability of a ptychographic reconstruction into multiple mutually incoherent modes and thus the Coherence in the name CoSAXS was verified. How the beamline can be used both for coherent imaging and XPCS measurements, which both heavily rely on the degree of coherence of the beam, was demonstrated. These results are the first experimental quantification of coherence properties in a SAXS instrument at a fourth-generation synchrotron light source.

8.
J Synchrotron Radiat ; 28(Pt 6): 1935-1947, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34738949

RESUMO

NanoMAX is the first hard X-ray nanoprobe beamline at the MAX IV laboratory. It utilizes the unique properties of the world's first operational multi-bend achromat storage ring to provide an intense and coherent focused beam for experiments with several methods. In this paper we present the beamline optics design in detail, show the performance figures, and give an overview of the surrounding infrastructure and the operational diffraction endstation.

9.
J Synchrotron Radiat ; 28(Pt 4): 1253-1260, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34212891

RESUMO

The emergence of fourth-generation synchrotrons is prompting the development of new systems for experimental control and data acquisition. However, as general control systems are designed to cover a wide set of instruments and techniques, they tend to become large and complicated, at the cost of experimental flexibility. Here we present Contrast, a simple Python framework for interacting with beamline components, orchestrating experiments and managing data acquisition. The system is presented and demonstrated via its application at the NanoMAX beamline of the MAX IV Laboratory.

10.
J Synchrotron Radiat ; 28(Pt 3): 1030, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33950011

RESUMO

A correction in the paper by Seiboth et al. [(2018). J. Synchrotron Rad. 25, 108-115] is made.

11.
Opt Express ; 29(9): 14025-14032, 2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33985128

RESUMO

We report on the manufacturing and testing of the first nanofocusing refractive lenses made of single-crystal silicon carbide. We introduce the fabrication process based on lithography, followed by deep isotropic etching. The lenses were characterized at the energy of 12 keV at the beamline P06 of the synchrotron radiation source PETRA III. A focal spot of 186 nm×275 nm has been achieved with a lens working distance of 29 mm.

12.
Sci Rep ; 11(1): 1500, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33452343

RESUMO

Ptychographic X-ray microscopy is an ideal tool to observe chemical processes under in situ conditions. Chemical reactors, however, are often thicker than the depth of field, limiting the lateral spatial resolution in projection images. To overcome this limit and reach higher lateral spatial resolution, wave propagation within the sample environment has to be taken into account. Here, we demonstrate this effect recording a ptychographic projection of copper(I) oxide nanocubes grown on two sides of a polyimide foil. Reconstructing the nanocubes using the conventional ptychographic model shows the limitation in the achieved resolution due to the thickness of the foil. Whereas, utilizing a multi-slice approach unambiguously separates two sharper reconstructions of nanocubes on both sides of the foil. Moreover, we illustrate how ptychographic multi-slice reconstructions are crucial for high-quality imaging of chemical processes by ex situ studying copper(I) oxide nanocubes grown on the walls of a liquid cell.

13.
J Appl Crystallogr ; 53(Pt 6): 1444-1451, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33304222

RESUMO

Ptychographic X-ray computed tomography is a quantitative three-dimensional imaging technique offered to users of multiple synchrotron radiation sources. Its dependence on the coherent fraction of the available X-ray beam makes it perfectly suited to diffraction-limited storage rings. Although MAX IV is the first, and so far only, operating fourth-generation synchrotron light source, none of its experimental stations is currently set up to offer this technique to its users. The first ptychographic X-ray computed tomography experiment has therefore been performed on the NanoMAX beamline. From the results, information was gained about the current limitations of the experimental setup and where attention should be focused for improvement. The extracted parameters in terms of scanning speed, size of the imaged volume and achieved resolutions should provide a baseline for future users designing nano-tomography experiments on the NanoMAX beamline.

14.
J Synchrotron Radiat ; 27(Pt 5): 1121-1130, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32876586

RESUMO

Modern subtractive and additive manufacturing techniques present new avenues for X-ray optics with complex shapes and patterns. Refractive phase plates acting as glasses for X-ray optics have been fabricated, and spherical aberration in refractive X-ray lenses made from beryllium has been successfully corrected. A diamond phase plate made by femtosecond laser ablation was found to improve the Strehl ratio of a lens stack with a numerical aperture (NA) of 0.88 × 10-3 at 8.2 keV from 0.1 to 0.7. A polymer phase plate made by additive printing achieved an increase in the Strehl ratio of a lens stack at 35 keV with NA of 0.18 × 10-3 from 0.15 to 0.89, demonstrating diffraction-limited nanofocusing at high X-ray energies.

15.
J Appl Crystallogr ; 53(Pt 4): 957-971, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32788903

RESUMO

Ptychographic X-ray imaging at the highest spatial resolution requires an optimal experimental environment, providing a high coherent flux, excellent mechanical stability and a low background in the measured data. This requires, for example, a stable performance of all optical components along the entire beam path, high temperature stability, a robust sample and optics tracking system, and a scatter-free environment. This contribution summarizes the efforts along these lines to transform the nanoprobe station on beamline P06 (PETRA III) into the ptychographic nano-analytical microscope (PtyNAMi).

16.
Opt Express ; 28(4): 5069-5076, 2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-32121735

RESUMO

The NanoMAX hard X-ray nanoprobe is the first beamline to take full advantage of the diffraction-limited storage ring at the MAX IV synchrotron and delivers a high coherent photon flux for applications in diffraction and imaging. Here, we characterize its coherent and focused beam using ptychographic analysis. We derive beam profiles in the energy range 6-22 keV and estimate the coherent flux based on a probe mode decomposition approach.

17.
J Synchrotron Radiat ; 27(Pt 2): 486-493, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32153289

RESUMO

This paper presents a deep learning algorithm for tomographic reconstruction (GANrec). The algorithm uses a generative adversarial network (GAN) to solve the inverse of the Radon transform directly. It works for independent sinograms without additional training steps. The GAN has been developed to fit the input sinogram with the model sinogram generated from the predicted reconstruction. Good quality reconstructions can be obtained during the minimization of the fitting errors. The reconstruction is a self-training procedure based on the physics model, instead of on training data. The algorithm showed significant improvements in the reconstruction accuracy, especially for missing-wedge tomography acquired at less than 180° rotational range. It was also validated by reconstructing a missing-wedge X-ray ptychographic tomography (PXCT) data set of a macroporous zeolite particle, for which only 51 projections over 70° could be collected. The GANrec recovered the 3D pore structure with reasonable quality for further analysis. This reconstruction concept can work universally for most of the ill-posed inverse problems if the forward model is well defined, such as phase retrieval of in-line phase-contrast imaging.

18.
J Synchrotron Radiat ; 26(Pt 5): 1769-1781, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31490169

RESUMO

Two in situ `nanoreactors' for high-resolution imaging of catalysts have been designed and applied at the hard X-ray nanoprobe endstation at beamline P06 of the PETRA III synchrotron radiation source. The reactors house samples supported on commercial MEMS chips, and were applied for complementary hard X-ray ptychography (23 nm spatial resolution) and transmission electron microscopy, with additional X-ray fluorescence measurements. The reactors allow pressures of 100 kPa and temperatures of up to 1573 K, offering a wide range of conditions relevant for catalysis. Ptychographic tomography was demonstrated at limited tilting angles of at least ±35° within the reactors and ±65° on the naked sample holders. Two case studies were selected to demonstrate the functionality of the reactors: (i) annealing of hierarchical nanoporous gold up to 923 K under inert He environment and (ii) acquisition of a ptychographic projection series at ±35° of a hierarchically structured macroporous zeolite sample under ambient conditions. The reactors are shown to be a flexible and modular platform for in situ studies in catalysis and materials science which may be adapted for a range of sample and experiment types, opening new characterization pathways in correlative multimodal in situ analysis of functional materials at work. The cells will presently be made available for all interested users of beamline P06 at PETRA III.


Assuntos
Catálise , Ciência dos Materiais/instrumentação , Microscopia Eletrônica , Elétrons , Desenho de Equipamento , Ouro/química , Síncrotrons , Temperatura , Raios X , Zeolitas/química
19.
Opt Lett ; 44(18): 4622-4625, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31517948

RESUMO

In this Letter, we report on the creation of hard x-ray beams carrying orbital angular momentum of topological charge -ℏ and -3ℏ at a photon energy of 8.2 keV via spiral phase plates made out of fused silica by ultrashort-pulsed laser ablation. The phase plates feature a smooth phase ramp with a 0.5 µm nominal step height and a surface roughness of 0.5 µm. The measured vortex beams show submicrometer-sized donut rings and agree well with numerical modeling. Fused silica phase plates are potentially suited to manipulate the electromagnetic field in highly intense x-ray beams at x-ray free-electron laser sources.

20.
Chemistry ; 25(63): 14430-14440, 2019 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-31478582

RESUMO

The successful synthesis of hierarchically structured titanium silicalite-1 (TS-1) with large intracrystalline macropores by steam-assisted crystallisation of mesoporous silica particles is reported. The macropore topology was imaged in 3D by using electron tomography and synchrotron radiation-based ptychographic X-ray computed tomography, revealing interconnected macropores within the crystals accounting for about 30 % of the particle volume. The study of the macropore formation mechanism revealed that the mesoporous silica particles act as a sacrificial macropore template during the synthesis. Silicon-to-titanium ratio of the macroporous TS-1 samples was successfully tuned from 100 to 44. The hierarchically structured TS-1 exhibited high activity in the liquid phase epoxidation of 2-octene with hydrogen peroxide. The hierarchically structured TS-1 surpassed a conventional nano-sized TS-1 sample in terms of alkene conversion and showed comparable selectivity to the epoxide. The flexible synthesis route described here can be used to prepare hierarchical zeolites with improved mass transport properties for other selective oxidation reactions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...